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AN IMPROVED TOEPLITZ APPROXIMATION METHOD!

K. S. Arun
Electrical and Computer Engineering
Coordinated Science Laboratory

Univ. of Illinois at Urbana-Champaign

Urbana, IL-61801

ABSTRACT

In this paper, we suggest a modification of the Toe-
plitz approximation method for estimating frequencies of
multiple sinusoids from covariance measurements. The
method constructs a state-feedback matrix following a
low-rank approximation of the Toeplitz covariance matrix
via singular value decomposition. Ideally, the eigenvalues
of this state-feedback matrix will be on the unit circle in
the complex plane, and the angles that they make with the
real axis will be equal to the unknown sinusoid frequen-
cies. The modification proposed here exploits this prior
knowledge of the modulus of the eigenvalues, and guaran-
tees that even in the presence of noise, the eigenvalues of
the estimated state-feedback matrix will lie on the unit
circle.

1. INTRODUCTION

The problem of retrieving multiple sinusoids (with
frequencies close to cach other) from perturbed time-series
or covariance information is of special interest in a vast
range of signal-processing applications. Very often the
covariance sequence may have to be estimated from time-
series data, as in Doppler processing in radar. It is not
uncommon, however, to encounter applications in which
the (time-series) data are not measurabie while the covari-
ance information is directly available. Such situations
arise in astronomical star bearing estimation, interference
spectroscopy. and some sensor array applications. ‘

In recent years, there has becn a great deal of interest
in model-based sinusoid retrieval. Models convert the
non-linear problemn of estimating the sinusoid frequencics
into a simpler problem of estimating the parameters of a
linear model {1]. The sccond step in ail model-based
methods is the extraction of the desired information (the
frequencies) from the estimated model parameters {2].
Both steps are important for thc overall success of a
model-based method. lil-conditioning at cither step can
adversely cffect the overall performance of the method
and should be avoided. The reliability of the first step
depends on the estimation procedure, and that of the
second step on the sensitivity of the desir~d information to
the model paramcters [3]. A popular model for the
sinusoid retrieval problem is the linear prediction mode!
first used by Prony in 1881,

'This work was partially sponsored by SDIO/IST and managed by the US
Army Research Office under contract DAALOY %6 K 0107,

2352

CH2561.9/88/0000-2352 $1.00 . 1988 IFEF

Bhaskar D. Rao
Applied Mechanics and Engineering Science
System Science Group
Univ. of California at San Diego
La Jolla, CA-92093

y(t) = f a,y(1—%k)
k=1
whose parameters may be reliably estimated by the
method of Tufts and Kumaresan [4]. The roots of the
polynomial formed from these parameters are ideally
expected to be on the unit circle in the complex plane, and
the angles that they make with the real axis should equal
the sinusoid frequencies.

2. STATE-SPACE REPRESENTATION

It turns out that the sinusoidal model is a very spe-
cial case of the general linear rational model, and that just
as there are alternate parameterizations of linear systems,
there also are alternate parameter sets for the sinusoidal
model as well. Just as there is a state-space representation
for every realization of a linear, rational system, there is
also a state-space representation for every realization of
the sinusoidal model. The state-space representation of the
special model for sinusoidal signals (frequencics: .
i=1,2.....n)is:

x(k + 1) =Fx(k)
y(k) = hx(k)"
where the order of the model p is twice the number of
sinusoids, and the eigenvalues of F are of unit magnitude
and equal ¢ ™™, i={.2,...n. The sinusoidal signal y(1) is the
model’s zero-input response to some non-zero initial condi-
tion x(0). In fact, we have

y()=hF%(0), t20.
and the covariance r{m) of the sinusoidal signal satisfies
{m)=hF™Ph' m 20 (1

where P is the state-covariance matrix, and the superscript
t denotes the Hermitian transpose.

The linear prediction model is a canonica) realization
of the above, with

x(t) = [y(t=1) y(1=2}-- - y(t—p) l‘.

alaz~.ap
1 0..0
o1..0
F=]. . .. .| h= [a, a, - ap].
00..0




Another canonical realization which avoids the second step
completely is

F = diag ('), h=(1,1,..1)

However, the first step of estimating the model parameters
becomes difficult for this realization. This non-uniqueness
of the parameter triple (F.x(0)h) that characterizes the
realization, allows one 10 choose a rcalization that makes
both steps of the model-based method reliable. The state
space parameters can be estimated from covariance data by
using the factorizations derived below.

Using Eq. (1) for the covariance lags, and noting that
the state covariance matrix P satisties P = FPF', it can be
shown that

r(~m) = hF~™Ph'. (2)

Using Eqs. (1) and (2), the Toeplitz covariance matrix

r(0) r(~1) r(=2) . r{—n)
r(1) rl0)  r(=1) . r{=n+1)

_ |72 (1) r{0) . 1(=n+2)}
r(n) r(n—=1) r{n—2) . . r(0)

can be factorized as shown below.

h

hF

hF?

R= ‘Ph‘ F~'Ph' F~2pht F~"pht
hF"

R=0T.
Both © and T are full rank, and so the rank of R is equal
to the model order p, which is twice the number of
sinusoids [5). Observe that the i'" row of @ is hF'™!, and
the i™ column of T is FT*IPh", so that F may be obtuined
by solving the overdetermined system of equations

8F=6, (3)

where 8, (8;) is obtained from © by deleting the last
(first) row, or by solving

F"’I', =rz. (4)

where T, and I'; are defined in a manner similar to ©; and
8, respectively.

3. ORIGINAL TAM

The above discussion indicates how the sinusoid fre-
quencies may be obtained from covariance data, when the
information is exact. Let the singular value decomposition
(SV'D) of the Toeplitz matrix R (which is also the eigen-
decomposition when the covariances are exact) be
R=ULV!', where I contains only the non-zcro singular
values. Hence, the dimensions of diagonal matrix T will
equal the rank of R, which is also the order of the model! p.
Different factorizations

8= UL"Q, T'= Q lL"V!

of the Toeplitz matrix are pussible, and cach will lead to
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dilferent state-space realization of the order-p sinusoidal
model as

(5)

Here. the superscript L (similarly R) denotes any left-
inverse (or right-inverse). They exist because the matrices
under consideration have full rank. The frequencies of the
sinusoids may then be found as the angles of the eigen-
values of the F matrix.

F=0'9,=(I,r})"

Theoretically, the algornithm should work for any
choice of Q. For instance, the choice Q = LV, where V,
denotes the matrix formed from the first p rows of V, will
lead to the canonical recalization with the linear prediction
parameters. The so-called balanced choice Q =1 is the pre-
ferred choice for reducing the sensitivity of the sinusoid
frequencies to the model parameters.

It 1s well known in the numerical analysis literature
that the cigenvalues of a normal matrix are least sensitive
10 perturbations in the matrix entries [6). Recall that F is
a normal matrix if it satisfiecs FF' = F'F. Since the state-
feedback matrix of the sinusoidal model has eigenvalues of
unit modulus, this amounts to requiring that the matrix be
unitary. Note that for every realization of the sinusoidal
model, F has cigenvalues on the unit circle, which is a
necessary condition for it to be unitary. It is not a
sufficient condition however, and not all realizations of the
sinusoidal model have unitary state-feedback matrices;
but it turns out that

Theorem 1: The F matrix obtained from any symmetric
factorization (8 = TI'') of the square covariance matrix R is
unitary.

Proof: Let®=T' Then®, =T} and 8,=T,. Com-
bining this with Eq. (5), we have F = (F~!)" which implies
F is unitary. []

The Toeplitz approximation method (TAM) of [7, 5]
exploits these facts to reliably estimate the sinusoid fre-
quencies from inexact covariances. Inexactness can be
caused in practice, by a number of factors, additive noise
in the data, errors in estimating the covariances, finite pre-
cision errors, and others. At first, TAM performs an SVD
of R, and retains the p principal components (i.e., the p
largest singular values and the corresponding singular vec-
tors). SVD is preferred to eigendecomposition because in
the presence of perturbations, R may not be non-negative
definite. Let the singular vectors and singular values after
the low-rank approximation be UL, and V. Next, TAM
picks @ = UL", and looks (or an approximate solution to
Eq. (3). The approximation criterion used is least-squares,
and the TAM estimate is

0/e,. (6)

where the superscript t denotes the pseudo-inverse. The
sinusoid frequency cstimales are then, the angles of the

Fiam =

eigenvalues of Fy - 0
Theorem 1 indicates that in the noiseless situation, 0O
TAM'’s choice of factor @ as UL™ will make the F-matrix - ——d
unitary. In the low SNR case as well, 1if there is an exact ——
solution to Lq. (3), (which is the case when no low-rank
approximation 1s made, R is non-ncgative definite and ~ 7
exactly equal to ULV, for instance) then the solution will e
cedes
~—q
Jcr
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be unitary. But whenever a principal-components approx-
imation is made and there is no exact solution to Eq. (3),
the least-squares solution Fpay will gencrically not be
unitary.

4. IMPROVED TAM

The modification proposed in this scction s the inchu-
sion of the unitary constraint on F in the least-squares
solution of Eq. (3). Such a constraincd least-squares
problem also arises in motion estimation and a simple
analytical solution was derived in [8]. We include the
problem and the solution here, but refer the reader to [8]
for the derivation of the algorithm.

Problem:  Given two real-valued n by p matrices ©, and
8,, n2p, find p by p matrix F that minimizes

Trace [(8,F — 0,)(8,F —6,)|.

subject to the constraint that F be unitary.
Solution: Caiculate the p by p matnix

H= 0o,

Let the SVD of H be UyZ,Vyj. where Ly includes all p
singular values, even if they are zero. Then the solution to
the constrained least-squares problem is

i:‘\.miury = VHU}}' (7)

We propose the use of this solution in place of Eq. (6)
to guarantee that the estimated F-matrix is unitary and
consequently does have eigenvalues on the unit circle. To
reduce the effects of noise on the estimate of F, TAM’s
choice of © is also slightly modified as follows. The com-
plete algorithm is

Improved TAM algorithm:
1. Compute the SVD of R

T
R= T uoo,v,.
k=1
where the rank r is at least as large as p, and the singular
values are numbered in order of decreasing magnitude.
Then, denote

U= ‘u, up]. I = diag(oy =0y k=l.ph

and choosc
= yr™

2. Let the SVD Or H=@1'®, be U”E”V,;, where }:”
includes all p singular values. Then the new estimale of
the state-fcedback matrix 1s

Funiur_\' = VIIU|||‘

A heuristic reasoning for subtracting the (p+1)-th
singular value in the construction of @ is the following.
When there is additive white noisc in the data and the
covariances arc cxacl, all singnlar values of R po
translated up by the noisc variance, but the singular vec-
tors are not effected. So, if © Is constructed from the p
principal components, then, Eq. (3) will have an exact
solution. But if o,,; is not subtracted off, the solution

will not be unitary.

5. SIMULATIONS

Our simulations have shown noticeable improvement
in TAM's performance when exact covariances are avail-
able; but negligible improvement when covariances have 1o
be estimated from low SNR data.

Example 1. In the first example, it is assumed that
exact covariances are available, corresponding to a single
sinusoid in an additive AR(1) process.

{m)= cos(27fm) + p(0.5)' ™'

The improved TAM and the original TAM were used on
covariances r(0), r(12); corresponding to different
values of the sinusoid frequency f. The Toeplitz matrix
used was of size 13 x 13, and a rank-2 approximation was
employed in each algorithm. The simulations were per-
formed in double precision on a VAX 780 using FORTRAN
77. The IMSL routines LSVDF, and EIGRF were used in
the programs.

Table I gives the results for SNR 10 dB (p=0.1).
Our results indicate that TAM fails to detect the sinusoid
at frequencies around 107* (i.e., both cigenvalues were
real), and the improved TAM is able to resolve the two
complex exponentials at much smaller frequencies. but
appears to make large errors in the frequency estimate.

Table 11 gives the results for low SNR for a fixed fre-
quency =0.2. Both mecthods appear to fail at the same
SNR in this simulation.

Exampie 2. In this example. data corresponding to two
equi-amplitude real sinusoids in additive white noise was
used as the starting point {or the estimation schemes.

y(n) = Acos(27f n) + Acos(2nf.n+d) + win),

where ¢ is a random variable uniformiy distributed over
{~m.+7]. and w(n) is sero-mean Gaussian whife noise,
independent of &. Only 48 consecutive observations from
a single sample sequence are given; and the covariance lags
have to be estimated by temporal averaging over the single
record.  For the experiment. IMSIL routines GGUBS and
GGNML were used to generate @ and w{n) respectively.
The original TAM as well as the improved TAM were both
employed to estimate the sinusoid frequencies from
unbiased covariance estimates, using rank-2 approxima-
tions. The experiment was repeated 50 times using
independent realizations of ¢ and w(n). and the arithmetic
mean and standard deviation was computed for the 50
cstimates of each frequency. The simulations were per-
formed in single precision on a 60-bit CYBER 175 using
FORTRAN 77,

Table 111 gives the results for SNR 10 dB. f, = (0.125,
f, =0.135, and matrix sice 32 by 32, ‘lablc 1V gives the
results for SNR 3 dB. f, =0.125, f, =0.145, and matrix
size 24 by 24. The results seem to indicate that any
improvement over the original TAM is marginal in this
example. A possible explanation is that TAM has achicved
(or is very close to) the Cramer-Rao lower bound and can-
not be further improved. Another possibility s that the
state-feedback matrix estimated by the the original TAM
is already close to unitary, even before imposing the con-
straint. Both possibilities are the subject of current inves-
tigation.
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True f 0.20000 { 0.02000 | 0.00200 | 0.00100 | 0.00050 | 0.00020
Original TAM 0.19979 | 0.02004 | 0.00184 | 0.00000 | 0.00000 | 0.00000
Improved TAM [ 0.19980 | 0.01988 | 0.00206 | 0.00158 | 0.00146 | 0.00143
Table 1 (SNR ~ 10 dB)
SNR 10 dB 0 dB -2 dB -4 dB -5 dB
Original TAM estimate 0.19979 | 0.19767 | 0.19583 | 0.18968 | 0.16661
Improved TAM estimate { 0.19980 { 0.19781 | 0.19607 | 0.19000 | 0.16362
Table 11 (f = 0.2)
f, I £ T,
Mean 0.12848 0.13761 Mean 0.12713 0.16271
Orig. TAM Orig. TAM
Std. dev. [ 3.94x1077 | 535x 107 Std_dev. | 434x 107 | 7.42x 107
Mean 0.12854 0.13743 Mean 0.12439 0.15275
Impr. TAM Impr. TAM
Std.dev. | 3.83x 1077 | 5.21x107¢ Std. dev. | 3.64x 10~ | 3.71 x 10~
Table 111 (£,=0.125. {,=0.135) Table IV (1,=0.125. f,=0.145)
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